科研团队

首页 > 科研团队 > 高端装备智能感知与运维团队
MENU

胡雷

2b13b1261dee4a1bae095570bdd5d2ad.jpg

一、基本情况

胡雷,男,安徽界首人,1981年8月生,博士、副研究员、特聘教授,博士生导师,中国振动工程学会故障诊断专业委员会理事,湖南省机械故障诊断与失效分析学会常务理事,英国University of Huddersfield访问学者,长沙市高层次人才,长沙市军民融合高层次人才。主要从事机械动力学、动态信号处理、故障诊断与预测、健康管理与智能运维等方面的研究工作。

联系电话:18100750610电子邮箱: hulei0819@foxmail.com

二、受教育经历

2006.03-2010.06,国防科学技术大学,机电工程与自动化学院,机械工程专业博士

2003.09-2005.12,国防科学技术大学,机电工程与自动化学院,机械工程专业硕士

1999.09-2003.06,西安交通大学,机械工程学院,机械工程及自动化专业本科

三、工作经历

2021.11-至今,湖南科技大学,机械设备健康维护省重点实验室,副研究员,特聘教授

2019.04-2021.10,湖南挚新科技发展有限公司,产品需求工程师

2018.07-2021.06,湖南工业大学,交通工程学院,特聘教授

2017.11-2018.06,国防科技大学,智能科学学院,讲师

2017.02-2017.05,英国哈德斯菲尔德大学,访问学者

2010.07-2017.10,国防科学技术大学,机电工程与自动化学院,讲师

四、主持/参与的主要科研项目

1.国家重点研发计划项目子任务“基于相似性的风电机群服役质量数字孪生模型融合优化技术(2022YFF0608704)”,经费35万,2022.10-2026.03,主持

2.国家自然科学基金面上项目“复杂多变工况下装备传动部件损伤识别与剩余使用寿命预测理论方法研究(51575518)”,经费63万元,2016.01-2019.12,主持

3. 国家自然科学基金青年基金“直升机传动链累积损伤跟踪与预测的相空间曲变理论与方法研究(51105366)”,经费24万元,2012.01-2014.12,主持

4. 装备预研基金项目“低速和非整周运转装备传动部件损伤感知与智能诊断技术”,经费20万元,2020.01~2021.12,主持

5. 装备维修科学研究与改革项目“***电机健康状态感知与预警系统研制”,经费62万元,2015.05-2016.05,主持

6.装备预研项目“装备关键部件故障预测技术——变工况下***主减速器故障预测技术”,经费362万元,2016.12-2020.12,实施负责(排名2)

7.装备预研项目“***动力传动系统退化状态识别与剩余寿命预测技术”,经费200万元,2011.01-2015.12,实施负责(排名2)

8.横向课题“传动系统关键动部件故障预测(源自装备预研项目)”,经费18.5万元,2019.03-2019.11,主持

9.国防科学技术大学科研计划项目“装备传动系统损伤的非线性动力学分析与智能预测方法研究(JC12-03-02)”,经费15万元,2012.04-2014.03,主持

10.国家自然科学基金面上项目“变工况下复杂叶片盲多频振动深度学习稀疏重构与早期损伤检测机理(51975206)”,经费60万元,2020.01-2023.12,参与(排名2)

11.国家自然科学基金面上项目“直升机攸关动部件损伤预测及其性能测度评估研究(51475463)”,经费83万元,2015.01-2018.12,参与(排名2)

12. 国家自然科学基金面上项目“面向直升机主减速器剩余使用寿命预测的状态信号压缩感知方法研究(51375484)”,经费80万元,2014.01-2017.12,参与(排名2)

13.国家自然科学基金青年基金“直升机传动系统行星轮系损伤检测与预测的模型驱动理论与方法研究(50905183)”,经费23万元,2010.01-2012.12,参与(排名2)

14.装备预研项目“***旋翼和传动系统的故障预测与健康管理技术”,经费100万元,2011.01-2015.12,参与(排名3)

15.装备技术基础重点项目“基于预测与健康管理的装备故障诊断与预测方法研究”,经费60万元,2011.01-2012.12,参与(排名3)

五、科研奖励

1. 排名7,可重复使用液体火箭发动机健康监控与故障诊断技术,军队科技进步二等奖(编号:2012863702202),2012.11

2. 排名1,基于随机共振的直升机传动链故障检测系统,军队科技进步三等奖(编号:2016282830140003-1),2017.12

六、代表性论文

1. Lei Hu, Lun Zhang, Fengshou Gu,Niaoqing Hu, Andrew Ball. Extraction of the largest amplitude impact transients for diagnosing rolling element defects in bearings [J]. Mechanical systems and signal processing, 116 (2019) 796~815. (SCI)

2.Lei Hu, Ligui Wang, Yanlu Chen, Niaoqing Hu, Yu Jiang.Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise [J]. Sensors, 2022, 22(17), 6570. (SCI)

3. Lei Hu, Yuandong Xu, Fengshou Gu*, Jing He, Niaoqing Hu, Andrew Ball. Autocorrelation ensemble average of larger amplitude impact transients for the fault diagnosis of rolling element bearings [J]. Energies, 2019, 12(24), 4740.(SCI)

4. Hu Lei, Hu Niaoqing, Fan Bin, Gu Fengshou, and Zhang Xiangyi. Modeling the relationship between vibration features and condition parameters using relevance vector machines for health monitoring of rolling element bearings under varying operation conditions [J]. Mathematical Problems in Engineering, vol. 2015, Article ID 123730, 10 Pages, 2015. SCI

5. Lei Hu, Niaoqing Hu,Xinpeng Zhang, Fengshou Gu, and Ming Gao. Novelty detection methods for online health monitoring and post data analysis of turbopumps [J]. Journal of Mechanical Science and Technology, 27 (7) (2013) 1933~1942. SCI

6. Hu Lei, Hu Niaoqing, Qin Guojun, Gu Fengshou. Turbopump condition monitoring using incremental clustering and one-class support vector machine [J]. Chinese Journal of Mechanical Engineering, 2011, 24(3): 474-479. SCI

7. 范彬,胡雷*,胡茑庆. 变工况下旋转机械故障跟踪的相空间曲变方法 [J]. 物理学报, 2013,62(16): 160503-1~160503-8. SCI

8. Bin Fan, Lei Hu*, Niaoqing Hu. Remaining Useful Life Prediction of Rolling Bearings by the Particle Filter Method based on Degradation Rate Tracking. Journal of Vibroengineering, 2015, 17(2): 743-756. SCI

9.胡雷; 范彬; 胡茑庆; 高明.变工况下轴承健康监测的相关向量机与自适应阈值模型方法[J]. 国防科技大学学报, 2016, 38(1): 168-174.

10. 范彬,胡雷,胡茑庆.退化速率跟踪粒子滤波在剩余使用寿命预测中的应用[J]. 国防科技大学学报, 2015, 37(3): 161-166.

11. Deyu He,Niaoqing Hu,Lei Hu,Ling Chen,et al. Fault risk assessment of underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. Polish Maritime Research, 2016, 23(3): 97-105 SCI

12. ZHANG Xin-peng, HU Niao-qing, Hu Lei, CHEN Ling. A bearing fault diagnosis method based on sparse decomposition theory [J]. Journal of Central South University,2016,23(8):1961-1969SCI

13. Deyu He, Niaoqing Hu, Lei Hu. A hybrid fault diagnosis method for mechanic-electronic-hydraulic control system based on simulated knowledge from virtual prototyping. Journal of Vibengineering, 2016 18(2): 900-915 SCI

14. J Gao, R Wang, L Hu, R Zhang. A novel manifold learning denoising method on bearing vibration signals. Journal of Vibroengineering, 2016,18 (1):175-189.(SCI

15. Xinpeng Zhang, Niaoqing Hu, Lei Hu, Ling Chen and Zhe Cheng. A bearing fault diagnosis method basedon the low-dimensional compressedvibration signal. Advances in Mechanical Engineering, 2015, 7(7): 1-12.

16. Xinpeng Zhang, Niaoqing Hu, Lei Hu, Ling Chen. A bearing fault detection method withlow-dimensional compressed measurements ofvibration signal. Journal of Vibroengineering, 2015, 17(3): 1253-1265. SCI

17. ZHANG Xiaofei, HU Niaoqing, Hu Lei, CHENG Zhe. Multi-scale bistable stochastic resonance array: A novel weak signal detection method and application in machine fault diagnosis. Science China Technological Science. 2013, 56(9): 2115-2123.SCI

18. Xiaofei Zhang, Niaoqing Hu, Lei Hu, Zhe Cheng. Stochastic Resonance in Multi-scale Bistable Array. Physics Letters A, 2013, 377: 981–984. SCI

19. ZHANG Xiaofei, HU Niaoqing, CHENG Zhe, Hu Lei.Enhanced Detection of Rolling Element Bearing Fault Based on Stochastic Resonance [J]. Chinese Journal of Mechanical Engineering. 2012, 25(6): 1287-1297.SCI



TOP